Approximation by homogeneous polynomials

نویسنده

  • Vilmos Totik
چکیده

A new, elementary proof is given for the fact that on a centrally symmetric convex curve on the plane every continuous even function can be uniformly approximated by homogeneous polynomials. The theorem has been proven before by Benko and Kroó, and independently by Varjú using the theory of weighted potentials. In higher dimension the new method recaptures a theorem of Kroó and Szabados, which is the strongest result for homogeneous polynomial approximation on smooth convex surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

Properties of Multivariate Homogeneous Orthogonal Polynomials

It is well-known that the denominators of Pade approximants can be considered as orthogonal polynomials with respect to a linear functional. This is usually shown by defining Pade -type approximants from so-called generating polynomials and then improving the order of approximation by imposing orthogonality conditions on the generating polynomials. In the multivariate case, a similar constructi...

متن کامل

Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method

In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method

متن کامل

Homogeneous Banach spaces with respect to Jacobi polynomials

Homogeneous Banach spaces determined by the Jacobi translation operator are introduced and studied. Based on this translation operator a Jacobi differential operator is analyzed. Approximation procedures in the homogeneous Banach spaces are presented.

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2013